
Abstract Aerosol forcing uncertainty represents the largest climate forcing uncertainty overall. Its 
magnitude has remained virtually undiminished over the past 20 years despite considerable advances in 
understanding most of the key contributing elements. Recent work has produced modest increases only in 
the confidence of the uncertainty estimate itself. This review summarizes the contributions toward reducing 
the uncertainty in the aerosol forcing of climate made by satellite observations, measurements taken 
within  the  atmosphere, as well as modeling and data assimilation. We adopt a more measurement-oriented 
perspective than most reviews of the subject in assessing the strengths and limitations of each; gaps and 
possible ways to fill them are considered. Currently planned programs supporting advanced, global-scale 
satellite and surface-based aerosol, cloud, and precursor gas observations, climate modeling, and intensive field 
campaigns aimed at characterizing the underlying physical and chemical processes involved, are all essential. 
But in addition, new efforts are needed: (a) to obtain systematic aircraft in situ measurements capturing the 
multi-variate probability distribution functions of particle optical, microphysical, and chemical properties (and 
associated uncertainty estimates), as well as co-variability with meteorology, for the major aerosol airmass 
types; (b) to conceive, develop, and implement a suborbital (aircraft plus surface-based) program aimed at 
systematically quantifying the cloud-scale microphysics, cloud optical properties, and cloud-related vertical 
velocities associated with aerosol-cloud interactions; and (c) to focus much more research on integrating the 
unique contributions of satellite observations, suborbital measurements, and modeling, to reduce the persistent 
uncertainty in aerosol climate forcing.

Plain Language Summary Aerosols, such as airborne wildfire smoke, desert dust, volcanic and 
pollution particles, affect Earth's climate by reflecting (some also absorb) sunlight. These aerosol particles 
also play key roles in cloud formation and evolution, further affecting the planet's energy balance. The 
magnitudes of these effects, and even the underlying mechanisms, represent the largest uncertainty in climate 
modeling. Despite two decades of advances in many aspects of aerosol-climate science, aerosol climate forcing 
uncertainty is virtually undiminished. Yet, reducing this uncertainty is critical for any effort to attribute, 
mitigate, or predict climate changes. We adopt a measurement-oriented perspective to assess the strengths 
and limitations of measurement and modeling programs, and conclude that current and planned efforts need 
to continue. However, in addition, new efforts are needed: (a) to obtain aircraft in situ measurements that 
capture systematically aerosol particle properties for the major aerosol airmass types, globally, (b) to conceive, 
develop, and implement an aircraft and surface-based program aimed at filling gaps in our understanding of the 
interactions between aerosol particles and clouds, along with (c) much more research focused on integrating 
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Key Points:
•  Aerosol climate forcing uncertainty 

is virtually undiminished despite two 
decades of advances in many aspects 
of aerosol-climate science

•  This review concludes that current 
and planned aerosol modeling, 
satellite and ground-based observation 
programs remain essential

•  New, systematic aircraft 
aerosol-particle and cloud-process 
measurements are also needed, along 
with better model-measurement 
integration
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1. Introduction
The confidence with which Earth's present and possible future climate can be simulated depends upon our ability 
to represent the factors that heat and cool the system, and the processes that mediate the environmental response. 
In this context, radiative forcing describes the energy fluxes that drive the climate system. Changes in the radi-
ative forcing of climate are caused primarily by perturbations of atmospheric constituents, mainly greenhouse 
trace gases (GHGs), airborne particles (aerosol particles), and clouds. By convention, positive forcing produces 
net surface heating, whereas negative forcing produces cooling. Understanding changes in the radiative forcing of 
climate is critical for any effort to attribute, mitigate, or predict climate change.

Although GHGs contribute most of the positive radiative forcing, its magnitude is tightly constrained, so uncer-
tainty in the climate forcing by aerosol particles dominates the uncertainty in forcing changes overall (e.g., Forster 
et al., 2021; Watson-Parris & Smith, 2022). Globally, aerosol forcing is generally negative. As one illustration 
of the importance of reducing aerosol forcing uncertainty, decreases in aerosol amount in some regions can lead 
to increased surface heating (Jenkins et al., 2022; Quaas et al., 2022). Thus, understanding the factors driving 
climate change, and improving our ability to predict climate changes under different future scenarios, requires a 
reduction in the uncertainty in aerosol climate forcing. This includes both the direct radiative forcing due to light 
scattering and absorption by airborne particles, as well as indirect effects due to the interactions between aerosol 
particles and clouds (ACI).

There are fundamental reasons why aerosol radiative forcing (ARF) is more difficult to quantify than forcing 
from GHGs. First, present-day aerosol forcing is often assessed relative to assumed pre-industrial conditions, 
which are presumed to be largely unaffected by human influences (e.g., IPCC, 2013). Yet, there are few observa-
tional constraints on the pre-industrial aerosol state (e.g., Carslaw et al., 2017). For example, for aerosol amount 
there is no analog to the ice core data that defines pre-industrial GHG concentrations, and unlike gases, aerosol 
microphysical properties vary greatly. Further, even for the present day, the distinction between natural and 
anthropogenic aerosol is often ambiguous. Is wind-blown dust to be considered natural or anthropogenic when it 
is emitted in regions experiencing desertification due to increased use of water resources, over-grazing and other 
farming practices, or some combination of larger-scale environmental changes of uncertain natural or anthropo-
genic origin? The same question applies to smoke aerosol from lightning-ignited wildfires that might be greatly 
intensified by anthropogenically enhanced warming, drying, or forest management practices. Also, in practical 
terms, remote-sensing data alone cannot be interpreted precisely enough in most cases even to distinguish natural 
aerosol from aerosol that are unambiguously anthropogenic when directly sampled (see Section 2 below). These 
issues with historical data and the attribution of today's emissions contribute to large uncertainty in the differ-
ence between aerosol forcing under both pristine and present-day conditions (Carslaw et  al., 2013; Hamilton 
et al., 2018).

Note that the total direct radiative forcing by aerosol includes natural sources, representing the dominant contri-
bution to the global atmospheric aerosol mass load, plus anthropogenic aerosol. The Intergovernmental Panel on 
Climate Change (IPCC) calls the total quantity the aerosol direct radiative effect, and refers to the anthropogenic 
component as the aerosol direct forcing. Given the ambiguities from an observational perspective, we use the 
term “aerosol forcing” to include anthropogenic and natural direct and indirect forcings and adjustments (defined 
subsequently); we specify direct or indirect where needed.

A second reason why ARF is more difficult to quantify: aerosol particles are vastly more spatially and temporally 
heterogeneous than GHGs, due to relatively short atmospheric lifetime, sources that are highly non-uniform in 
space and time, and particle physical and chemical evolution that varies with atmospheric conditions. As such, 
frequent, global observation of aerosol distribution and key properties must be provided to capture this hetero-
geneity. Not only is aerosol amount highly variable at different locations and times, aerosol light scattering, light 
absorption, and cloud nucleating properties vary considerably with source, composition, and particle evolution. 
As we discuss in Section 2, these factors cannot be determined adequately from remote sensing alone.

Finally, aerosol particles produce relatively large adjustments to forcing compared to GHGs. That is, aerosol 
particles have secondary climate impacts, such as changing the atmospheric stability profile or altering cloud 

the unique contributions of satellite observations, suborbital measurements, and modeling, to reduce the 
uncertainty in our understanding of Earth's changing climate.
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radiative properties, lifetime, and precipitation. These semi-direct (ambient heating by light-absorbing particles), 
indirect (e.g., increased particle concentration causing additional cloud droplet or ice crystal formation), and 
other effects represent aerosol-induced changes in the atmosphere that can cause changes in surface temperature 
indirectly. For example, vertical redistribution of aerosol extinction can alter the atmospheric thermodynamic 
structure, and atmospheric adjustments can even change the sign of black carbon forcing in the upper atmosphere 
compared to the surface (e.g., Lau et al., 2008; Samset et al., 2013), whereas for major GHGs such as CO2, adjust-
ments are estimated to represent much smaller fractional contributions (Forster et al., 2021). A combination of 
measurements and modeling is required to constrain adjusted forcing.

Reducing the magnitude of aerosol forcing uncertainty to a value comparable to that of CO2 and other 
long-lived GHGs (estimated at ±0.35 and ±0.23 W/m 2, respectively; IPCC, 2013) will require greater obser-
vational constraints than near-future satellite measurements alone are likely to provide. A lower bound on 
the uncertainty range of just the direct component of the total global-mean all-sky aerosol forcing (i.e., that 
due to scattering and absorption by airborne particles but not their indirect effects on clouds) is estimated as 
±1.1 W/m 2 when considering anticipated data from a planned next-generation NASA satellite mission aimed 
at addressing global climate change issues (1σ; Thorsen et al., 2021). (This number represents 30% or more of 
the global all-sky aerosol forcing by most estimates.) Systematically incorporating prior information beyond 
that available from current or near-future large-scale observations is necessary to reduce uncertainties in the 
role aerosol particles play in climate forcing. Thorsen et al. (2021) suggest that incorporating additional parti-
cle property constraints might approximately halve the direct forcing uncertainty estimate, though the even 
larger uncertainty associated with the indirect effects of aerosol particles on clouds is more difficult to reduce 
or even to estimate. Thus, to reduce climate modeling uncertainties, there is a crucial need for better particle 
optical, microphysical, and chemical property information than can be provided by satellite measurements 
alone. This persistent uncertainty is reflected in part by the enormously diverse, yet often simplistic, particle 
property assumptions made in different models (e.g., CCSP, 2009). Such diversity is also true of the aerosol 
optical model priors (i.e., initial guesses) or climatologies adopted as constraints in leading satellite aerosol 
retrieval algorithms (e.g., Holzer-Popp et  al.,  2013; Kahn & Gaitley,  2015; M.-H. Kim et  al.,  2018; Levy 
et al., 2007; Remer et al., 2005). Further, the uncertainties in aerosol-cloud interactions must be reduced as 
well.

Previous reviews of aerosol climate forcing tend to adopt a model-centric perspective, appropriately, as models 
offer the ability to make climate predictions. Such reviews can provide formal estimates of aerosol forcing and its 
uncertainties based on current modeling, often also taking account of the limited constraints provided by availa-
ble measurements (e.g., Bellouin et al., 2020). Here we take a more measurement-focused perspective, reviewing 
where we stand at present on the contributions measurements can make and their relationships with models, 
allowing us to also identify gaps that need to be filled.

Figure 1 provides a framework for discussing research activities aimed at reducing uncertainty in aerosol forcing, 
and also helps organize the material presented in subsequent sections. It illustrates the unique and essential roles 
played by satellite observations, measurements made within the atmosphere (often termed “suborbital” meas-
urements when taking a perspective that includes global satellite measurements), as well as aerosol and climate 
modeling, in closing the gap in aerosol forcing uncertainty relative to that of GHGs. The arrows and associated, 
color-coded annotations in Figure 1 highlight the required exchange of information between these three elements. 
(The common expression “a two-way street” means A affects B, but B also affects A. Here, A affects B and C, B 
affects A and C, and C affects A and B; hence, a three-way street.) From the synthesis provided by this review, 
we conclude that satellite measurement and modeling efforts and plans for addressing aerosol climate forcing are 
relatively mature. However, the uncertainty in aerosol impacts on climate directly, and indirectly through their 
interactions with clouds, could be significantly reduced through specific enhancements to the suborbital compo-
nent, along with greater synergy among the three elements. As such, we review the satellite and modeling contri-
butions first (Sections 2 and 3, below), then consider the suborbital element in Section 4, and provide a synthesis 
in Section 5 and the Conclusions. The view presented here is informed in part by discussions in the AeroCom 
and AeroSat communities over the past decade (https://aerocom.met.no and https://aero-sat.org, respectively; last 
accessed: March 2023), the work of the Systematic Aircraft Measurements to Characterize Aerosol Air Masses 
(SAM-CAAM) Science Definition Team (Kahn et al., 2017), and the collective insights of the authors of the 
current paper.

https://aerocom.met.no
https://aero-sat.org
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2. Satellite Contributions
Earth-orbiting satellites offer the opportunity to collect frequent, global data, and are well suited to remotely 
measure quantities that vary on kilometer or even smaller spatial scales, at daily or even shorter timescales.

2.1. Aerosol Amount—Total-Column Optical Depth and 3-D Distribution

For more than 20 years, satellites have demonstrated the ability to provide extensive spatial and frequent temporal 
coverage of aerosol column amount globally, primarily under clear-sky conditions, and generally reported as the 
mid-visible aerosol optical depth (AOD). This quantity is widely used as a constraint on climate models or for 
model evaluation (e.g., Buchard et al., 2017; Gelaro et al., 2017; Gliß et al., 2021; Kinne et al., 2006; Randles 
et al., 2017; Rubin et al., 2017; Schutgens et al., 2020), though non-negligible differences among AOD retrieval 
products must yet be addressed (J. Li et al., 2020; Sogacheva et al., 2020). Tables summarizing currently available 
satellite AOD products are given in Sogacheva et al. (2020) and Kahn and Samset (2022). Space-based lidars 
provide the altitudes of extended aerosol layers with the precision of tens of meters (e.g., Winker et al., 2009; 
Yorks et al., 2016), and usually sample well downwind of aerosol sources, where the AOD tends to be low enough 
for the signal to penetrate the column under cloud-free conditions. Lidar measurements are complemented by 
near-source aerosol plume height from multi-angle imagery obtained in low-Earth or geostationary orbit (Carr 
et  al.,  2022; Kahn et  al.,  2008; Nelson et  al.,  2013). Such information can help characterize aerosol vertical 
extent or source injection height in models (e.g., Val Martin et al., 2018; van Donkelaar et al., 2010). Although 
coverage by these measurements is currently limited, their precision has demonstrated value in constraining and/
or validating models aimed at simulating downwind wildfire smoke and volcanic ash dispersion (e.g., Vernon 

Figure 1. A framework for considering the research activities needed to reduce the persistent aerosol forcing uncertainty. It illustrates the relationships between the 
measurement and modeling contributions, and the interactions among these elements that we identify as central to this effort (adapted from Kahn, 2012). The arrows 
and associated, color-coded annotations indicate the contributions each element can make to the other two—a three-way street.
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et al., 2018; L. Zhu, Val Martin, et al., 2018). A number of satellite-based, passive-imager spectral techniques, 
at wavelengths ranging from the ultraviolet (UV) to the infrared, offer greater aerosol layer-height coverage, at 
the cost of additional assumptions that increase uncertainty (e.g., Go et al., 2020; Griffin et al., 2020; Jeong & 
Hsu, 2008; Kylling et al., 2018; Lu et al., 2021; Lyapustin et al., 2020). Passive-imager techniques, especially in 
UV channels, have also been effective in constraining aerosol occurrence, and even amount, over cloudy scenes 
(e.g., Meyer et al., 2015; Sayer et al., 2019; Torres et al., 2012).

Models require the source strength in addition to the injection height to represent aerosol sources. Efforts at 
using satellite AOD measurements to constrain source strength have applied either inverse modeling to infer 
source location along with strength from broad-swath-imager AOD maps (e.g., Dubovik et al., 2008), or forward 
modeling, where a measured smoke-plume AOD snapshot is compared to a model, run in the forward direction 
and initialized with varying source strengths (Petrenko et al., 2017). These methods work best for high-AOD 
aerosol plumes with little background or aged aerosol in the scene to complicate interpretation. Other approaches, 
specifically for wildfires, use the magnitude of the four-micron brightness temperature anomaly, which can be 
observed from remote sensing, combined with empirically derived, ecosystem-specific emission factors, to esti-
mate smoke source strength (e.g., Ichoku & Ellison, 2014; Wiggins et al., 2020; see review by Andreae, 2019). 
Next-generation spacecraft deployments promise to greatly increase coverage frequency and diurnal sampling, 
with instrumentation such as multi-angle, multi-spectral polarimeter imagers and High Spectral Resolution 
Lidars offering advanced measurement capabilities (e.g., https://aos.gsfc.nasa.gov, last accessed, June 2022). 
Further, recent advances in estimating satellite-retrieved AOD uncertainty, even at the individual pixel level, 
have increased the utility of the satellite AOD measurements as constraints on aerosol forcing (Sayer et al., 2020; 
Witek et al., 2018).

The largest remaining uncertainties in the measured global distribution of aerosol amount for climate forcing 
applications are due to (a) difficulties in retrieving AOD over snow, ice, bright or topographically complex 
land, and cloud-covered surfaces, (b) accounting in satellite retrieval algorithms for the detailed aerosol 
light-scattering  and light-absorption properties, as well as the hydration state of different aerosol types under 
ambient conditions that affect retrieved aerosol amount, (c) obtaining adequate spatial coverage for aerosol 
layer-height observations, and (d) specifying the relative-humidity-dependent Mass Extinction Efficiency (MEE) 
that is required to translate between AOD derived optically from remote sensing and the dry aerosol mass that is 
bookkept in climate and air quality models. Nighttime AOD is also poorly sampled by passive sensors including 
broad-swath imagers at present, and it can be important in accounting for the infrared part of the energy balance, 
especially in areas where airborne mineral dust is abundant. This is probably a secondary issue in representing 
global aerosol climate forcing, given the uncertainties under daylight conditions (e.g., Adebiyi & Kok, 2020); 
however, some space-based thermal IR (Capelle et al., 2018; Vandenbussche et al., 2013) and even visible (J. 
Wang et al., 2016) remote-sensing techniques hold promise to provide extensive nighttime AOD coverage beyond 
what is possible with active sensors. As discussed in subsequent sections, appropriate combinations of modeling 
and suborbital measurements with the satellite observations (Figure 1) appear to be key to addressing the limita-
tions of the space-based AOD data record.

2.2. Satellite Constraints on Aerosol Particle Properties

Satellite observations have up to now been less successful at providing the quantitative particle optical, 
microphysical, and chemical properties needed to model aerosol forcing. For example, uncertainty in aerosol 
light-absorption, usually represented by the spectral single-scattering albedo (SSA), is of comparable or possibly 
greater importance compared to AOD in setting the overall uncertainty in aerosol direct forcing of Earth's energy 
budget (J. Li et al., 2022; Loeb & Su, 2010; McComiskey et al., 2008; Thorsen et al., 2021). Along with aerosol 
vertical distribution, SSA is also critical for modeling the semi-direct aerosol effect, that is, the aerosol impact on 
solar-energy absorption and atmospheric heating, along with the attendant effects on clouds.

The ability to obtain quantitative or even qualitative constraints on properties such as particle size, SSA, and 
sphericity depends on retrieval conditions as well as instrument characteristics. These variables can be derived 
from multi-angle, multi-spectral observations when the surface is not too complex and the AOD is sufficiently 
high—typically exceeding 0.2 to 0.5 at mid-visible wavelengths. This is often challenging, as the global average 
mid-visible AOD is ∼0.14 (e.g., Andrews et al., 2017). For example, much of wildfire smoke instantaneous radi-
ative forcing occurs over extended areas downwind, where smoke AOD < 0.1 (Schill et al., 2020). In addition, the 

https://aos.gsfc.nasa.gov/
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sun-spacecraft observing geometry must provide an adequate range of scattering angles for robust results using 
this technique (e.g., Fougnie et al., 2020; Kahn & Gaitley, 2015; Kalashnikova et al., 2013).

Temporal compositing of single-view sensor measurements acquired at different times with different viewing 
angles (Lyapustin et al., 2021) and/or different AOD (e.g., Seidel & Popp, 2012; Wells et al., 2012) can also be 
used to enhance their information content and obtain tighter AOD or SSA constraints. Polarized, multi-spectral 
multi-angular measurements improve retrieval sensitivity to the real part of the particle refractive index and to 
the width of the particle size distribution, as well as broadening the range of conditions under which meaning-
ful particle-type constraints can be obtained (e.g., Dubovik et  al.,  2011; Hasekamp et  al.,  2011; Mishchenko 
& Travis,  1997). Despite this, systematic differences in aerosol absorption derived from different algorithms 
applied to the same polarimetric sensor still exceed the requirements for adequate constraints on aerosol forcing 
(Schutgens et al., 2021). Although the deployment of new polarimeters with increased polarimetric accuracy 
(e.g., Werdell et al., 2019) should reduce these discrepancies to some degree, algorithmic assumptions will still 
be required (e.g., when layers containing different aerosol types occur in the atmospheric column); as with all 
new measurements, the quality of the results remains to be demonstrated.

Space-based, two-channel backscatter lidar with polarization sensitivity currently provides a height-resolved clas-
sification of six empirically defined aerosol types operationally, using the retrieved depolarization ratio, attenu-
ated backscatter, layer top and base altitudes, and surface type as input (M.-H. Kim et al., 2018). Future spacecraft 
deployment of High-Spectral-Resolution Lidar (HSRL) instruments promises to refine lidar aerosol-type retrieval 
by constraining, in addition, the light extinction-to-backscatter ratio (e.g., Burton et al., 2012; Dawson et al., 2017; 
Hélière et  al.,  2012; Russell et  al.,  2014), a key aerosol-type-dependent microphysical property that must be 
assumed when interpreting backscatter-only observations in terms of aerosol amount. The inclusion of an UV 
channel in a future space-based lidar instrument for greater particle-type discrimination, especially with depo-
larization sensitivity, is also possible (Burton et al., 2015; Nicolae et al., 2018; Papagiannopoulos et al., 2018).

Overall, within the AOD and other retrieval caveats discussed above, satellite remote sensing can contribute to 
constraining direct aerosol forcing by mapping aerosol types qualitatively and identifying differences in particle 
size and light-absorption. However, to date, constraints from satellites alone on SSA and particle size distribution 
lack the coverage, the accuracy, as well as the error characterization, required for closing the aerosol forcing 
uncertainty gap in most environments.

When retrieval conditions are favorable, some general deductions about the mechanisms driving aerosol prop-
erty evolution have also been gleaned from satellite data, such as near-source in wildfire smoke and volcanic 
plumes. For example, changes in AOD, and in retrieved effective particle size and light-absorption downwind of 
major sources, have been used to infer size-selective or size-independent particle deposition, particle hydration or 
oxidation, secondary aerosol formation, the condensation of volatiles on existing particles, and particle activation 
processes (Flower & Kahn, 2020a, 2020b; Junghenn Noyes et al., 2020). In addition, having plume-level wind 
vectors, for example, derived from multi-angle stereo imaging, makes it possible to estimate timescales for the 
observed transitions, at least near major aerosol sources. Coincident field data, primarily from aircraft making 
detailed in situ measurements and in some cases from ground observers, have been essential for building confi-
dence in these inferences made from remote-sensing observations (e.g., Junghenn Noyes et al., 2020). At the same 
time, extensive, qualitative aerosol property mapping from satellites can place the detailed aircraft measurements, 
acquired, for example, along disjoint transects of a smoke plume, into the larger context of plume-particle evolu-
tion. This complementary exchange of information is illustrated in Figure 1 (red and dark green arrows). Further, 
despite the qualitative nature of satellite-based particle-evolution-process deductions, the satellite data also offer 
broad spatial coverage that allows for multi-year assessment of the dominant particle evolution processes and 
associated timescales where data quality is adequate (e.g., Junghenn Noyes et al., 2022).

Several approaches have been taken to using satellite measurements and the associated inferences as validation 
or constraints on models (Figure 1, blue and light green arrows). In addition to statistical comparisons between 
aggregated satellite observations and models of particle evolution processes and timescales, by configuring 
models to simulate specific instrument measurements, more quantitative, direct comparisons between models 
and observations can be made in some cases. The results can be especially useful as a means of diagnosing model 
behavior, leading to better constraints on model parameterizations, at least statistically. Such work has been 
performed mainly on daily snapshots from polar-orbiting instruments. However, as the capabilities of instruments 
on geostationary (Gupta et al., 2019; Lim et al., 2018; H. Zhang, Kondragunta, et al., 2020) and even more remote 
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platforms (Marshak et al., 2018) advance, data from these sources promise to increase constraints on aerosol 
processes by resolving the time-evolution of particle properties over large areas.

2.3. Strengths and Limitations of Space-Based Aerosol-Cloud-Interaction (ACI) Observations

From the satellite perspective, reducing the forcing uncertainties due to the indirect effects of aerosol parti-
cles on clouds is yet more challenging, given the subtlety and complexity of the aerosol as well as the cloud 
processes involved, and the range of spatial and temporal scales on which they operate (e.g., reviews by Bellouin 
et al., 2020; Quaas et al., 2020; Rosenfeld et al., 2014; Seinfeld et al., 2016; McCoy et al., 2016; Mülmenstädt 
& Feingold, 2018). Cloud-formation processes require aerosol particles to serve as cloud condensation nuclei 
(CCN), except under very cold, homogeneous-nucleation conditions. More generally, the CCN size spectrum 
and concentration, particle hygroscopicity, and SSA are all required to model cloud-droplet formation and ACI. 
However, the mutual interactions between ACI mean that the challenge is much greater than just measuring CCN, 
because a host of other cloud microphysical and dynamical processes change (“adjust”), depending in part on 
CCN properties and concentrations.

A fundamental limit to the contribution satellites can make regarding ACI is that particles smaller than about 
0.1 μm in diameter are difficult to characterize with remote sensing; they are very inefficient at scattering light 
and are essentially indistinguishable from the background atmospheric gas. Yet, such small particles can repre-
sent a significant fraction of the activated CCN, particularly under high updraft velocities (e.g., Stier,  2016; 
Twomey, 1974). Broad-swath, single-view imagers can provide AOD and can constrain its spectral dependence 
under good retrieval conditions. The extinction Ångström Exponent (ANG), defined as the negative slope of 
AOD versus wavelength (both in log space) is inversely proportional to particle size, provided a single aero-
sol mode dominates the atmospheric column. The product of AOD and ANG (derived from AOD retrieved 
at several wavelengths), designated the aerosol index (AI), yields a metric that weights AOD toward smaller 
(CCN-like) sizes (Nakajima et al., 2001). As an estimate of CCN, AI is a qualitative indicator at best, in part 
because particle hygroscopicity is generally unconstrained by remote-sensing measurements but can dominate 
the relationship between retrieved AOD and particle number, especially for small particles (Cao et al., 2023; 
Kapustin et al., 2006), and in part because extrapolating the observed part of the aerosol spectrum to smaller sizes 
engenders additional assumptions. However, AI is often treated as quantitative for lack of other observational 
constraints.

At the other end of the CCN size distribution, giant CCN, on the order of several microns in diameter, can have 
an inordinately large effect on precipitation formation in warm clouds, even at concentrations on the order 1/Liter 
(Feingold et al., 1999), far too low to be retrieved from space-based remote sensing. High concentrations of coarse-
mode and giant CCN (∼1–2 microns in diameter and larger) can also have a disproportionately large impact on 
cloud supersaturation and susceptibility to aerosol perturbations (e.g., Ghan et al., 1998; Morales Betancourt & 
Nenes, 2014). As such, giant CCN characterization must rely primarily on suborbital measurement. Some recent 
advances in aircraft instrumentation and analysis are improving our ability to characterize giant CCN in situ 
(e.g., Dadashazar et al., 2017; Gonzalez et al., 2022; Jung et al., 2015). Yet, giant nuclei measurement remains 
challenging, due to issues such as losses in conventional inlets (e.g., Wilson et al., 2004), sizing uncertainties in 
wing-mounted probes (e.g., Gonzalez et al., 2022), generally low number concentrations, and the need to know 
the time-history of relative humidity exposure to relate dry and ambient particle properties.

Particle light-absorption is also challenging to constrain quantitatively with remote sensing (Section 2.2 above). 
Yet aerosol composition, particularly smoke or dust aerosol having low SSA, can play an important role in driving 
cloud-mediated radiative forcing. Such particles can heat the atmosphere, reducing the ambient relative humidity 
and causing cloud-droplet evaporation (the so-called semi-direct effect). Further, by affecting the atmospheric 
vertical stratification, they can either suppress (e.g., Koren et al., 2004) or possibly enhance convection, depend-
ing on the location of the aerosol (Jiang & Feingold, 2006; Koren et al., 2005). Well-defined smoke plumes can 
apparently also alter mesoscale (S. S. Lee et al., 2014) and large-scale (Williams et al., 2022) circulation patterns.

Satellite-based mapping of aerosol amount over extended regions is obtained from passive measurements of 
column-integrated AOD. Attempts at correlating AOD directly with CCN concentration measured in situ have 
yielded only qualitative relationships (e.g., Andreae, 2009; Shen et al., 2019; Shinozuka et al., 2015), and vertical 
decoupling introduces significant additional uncertainty (Stier, 2016). Of particular relevance for this application, 
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the CCN that actually participate in the cloud-droplet-formation process are typically just below cloud base, a 
region inaccessible to passive measurements from space. These CCN can be measured directly only with in situ 
aircraft instruments or inferred from surface remote sensing, by inverting cloud microphysical measurements 
(Feingold et al., 1998), although indirect methods offer promise for some situations (e.g., Rosenfeld et al., 2016).

Further complicating the satellite contribution to measuring ACI is the complexity of interpreting remote-sensing 
observations in the vicinity of clouds (e.g., Marshak et al., 2021). This region, sometimes termed the “twilight 
zone,” contains a continuum of hydrated aerosol, evaporating cloud droplets, and cloud fragments (Koren 
et al., 2007). To interpret remote-sensing observations, both “cloud contamination” of the aerosol signal and 
light-scattering by the cloud must be taken into account. Standard retrieval algorithms assume 1-D radiative 
transfer whereas these situations are inherently three-dimensional; the 3-D radiative transfer that applies here can 
produce significantly different AOD retrieval results and aerosol forcing estimates (e.g., Wen et al., 2007; Yang 
et al., 2022). Furthermore, considering the hygroscopic growth of particles in the vicinity of clouds as a contin-
uum means that the aerosol forcing is driven by the 3-D spatial distribution of humidity in the cloud field (which 
varies on much smaller scales than the aerosol properties, e.g., Anderson et al., 2003).

Atmospheric dynamics plays an important role in determining the effects of aerosol on clouds, and this too is 
difficult to constrain from space at the relevant spatial and temporal scales, and with the required accuracy. Water 
vapor supersaturation, responsible for cloud droplet and ice crystal formation, is generated by expansion cooling 
that is directly proportional to vertical velocity. The fraction of particles that activate to form cloud droplets is 
often strongly dependent on updraft velocity, although aerosol number concentration, size distribution, and to 
a lesser extent composition also affect the result (Ervens et al., 2005; Feingold, 2003; McFiggans et al., 2006). 
Vertical velocity is more important when cloud supersaturation is low; such “velocity-limited conditions” occur 
frequently around the globe (Morales Betancourt & Nenes, 2014; Reutter et al., 2009; Sullivan et al., 2016). When 
low supersaturation occurs under high aerosol (polluted) conditions, drop concentration depends on both CCN 
concentration and vertical velocity (e.g., Bougiatioti et al., 2020; Foskinis et al., 2022; Georgakaki et al., 2021; 
Kacarab et al., 2020); however, factors such as aerosol size distribution and chemical composition can also become 
more important under these conditions (e.g., McFiggans et al., 2006; Rissman et al., 2004). In aerosol-poor envi-
ronments such as the Arctic, the factor limiting droplet formation is often the number concentration of CCN, and 
vertical velocity uncertainty becomes less important (e.g., Feingold et al., 2003; McFiggans et al., 2006). Yet, 
vertical velocity is rarely constrained by measurements contemporaneous with aerosol amount and properties 
such as particle size distribution and hygroscopicity (e.g., Bougiatioti et al., 2020; Kacarab et al., 2020). Further, 
despite its high spatial variability globally (order tens of meters), vertical velocity can only be measured at the 
required accuracy and spatial resolution with limited sampling, using active Doppler lidar or Doppler radar from 
suborbital platforms (e.g., Guimond et al., 2014; Schroeder et al., 2020). At least until next-generation satellite 
instruments are developed, updraft velocity measurements relevant to drop and ice formation are unlikely to be 
possible from spacecraft alone.

The most widely observed ACI process is cloud brightening, which is caused by an increase in CCN concen-
tration generating an increase in cloud droplet number, and all else being equal, a decrease in droplet size 
(Twomey, 1974). However, this conceptually simple mechanism is also strongly affected by cloud adjustments 
(e.g., Quaas et  al.,  2020; Twomey, 1977). Much work has focused on aerosol-related cloud brightening with 
all other factors, especially cloud liquid water path (LWP), held constant. However, both LWP and cloud frac-
tion have been shown to exhibit non-monotonic responses to aerosol perturbations. Under clean conditions, 
increases in aerosol tend to increase LWP, whereas under polluted conditions LWP might be reduced (Ackerman 
et al., 2004; Bretherton et al., 2007; Gryspeerdt et al., 2019; S. Wang et al., 2003). Similar results appear to be 
valid for cloud fraction (e.g., Gryspeerdt et al., 2021; Xue et al., 2008). Although some in-cloud processes can be 
inferred from satellite observations (e.g., Rosenfeld et al., 2016), at least with assumptions that must be carefully 
assessed (Grosvenor et al., 2018; Y. Zhu, Rosenfeld, & Li, 2018), the spatial and temporal resolution required 
to observe most ACI processes is beyond present-day satellite-measurement capabilities. Further, the lack of 
simultaneous, detailed, space-based observations of the multiple factors of import in these processes precludes 
resolving the key subtleties in these aspects of ACI with satellite data alone.

The processes associated with cloud brightening are relatively fast, for example, on order 10 min for aerosol acti-
vation in shallow clouds to approximately 20 hr for LWP and cloud fraction adjustments (Glassmeier et al., 2021). 
However, aerosol particles can also alter regional-scale circulation patterns on much longer timescales, which in 
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turn change cloud amount (e.g., Menon et al., 2002). From climate-forcing and even extreme-weather perspec-
tives, these circulation responses are of great importance (Persad et al., 2022; Soden & Chung, 2017; Williams 
et al., 2022). This is one aspect of ACI where satellite observations play a dominant role, providing frequent, 
regional-to-global-scale measurements of cloud amount and bulk cloud properties (Figure 1).

In summary, many of the factors that dominate aerosol-cloud-radiation interactions, such as CCN concentra-
tion, particle size spectrum and composition, are difficult to measure with space-based remote sensing; this is 
especially true for efforts to obtain coincident aerosol and related cloud properties. As such, knowledge of these 
quantities remains limited on a global scale (e.g., Seinfeld et al., 2016), leaving model-simulated aerosol indirect 
effects inadequately constrained by observations. Except in special circumstances and with stringent assumptions 
(e.g., Dawson et al., 2020; Pahlow et al., 2006; Rosenfeld et al., 2016), quantitative constraints on nearly all the 
key variables needed to characterize detailed ACI are beyond the capabilities of existing and currently planned 
space-based remote-sensing instruments. Nevertheless, satellite observations of well-defined aerosol sources 
such as ship tracks, industrial point sources of pollution, wildfire smoke and volcanic plumes, represent “natural 
laboratories” that have proven particularly useful in studying ACI, because the unaffected surroundings provide a 
control for the confounding factors associated with meteorology, at least to first order (Christensen et al., 2022). 
Also, the large data sets obtained from space can support fine-scale stratification of meteorological conditions, 
allowing the aerosol effects on clouds to be isolated statistically in some cases (e.g., Zamora & Kahn, 2020).

Characterizing ACI globally requires knowledge of co-varying aerosol properties and vertical velocity from subor-
bital platforms, as a function of meteorological variables that can also be monitored over broad regions from space 
or derived from reanalysis. The suborbital measurements would be targeted at characterizing statistically the key 
variables at cloud scale for a range of specific cloud types and meteorological conditions, some of which could be 
retrieved from space-based instruments with enough specificity to map out the appropriate ACI regimes. Steps in 
this direction have been taken by several field campaigns, including VOCALS (Bretherton et al., 2010; Mechoso 
et al., 2014), ORACLES (Redemann et al., 2021), and recently ACTIVATE (Sorooshian et al., 2019, 2021). The 
complexity of ACI and resulting ramification calls for a further, comprehensive program of targeted efforts of this 
kind, especially with simultaneous radiative flux measurements included, so the indirect effect can be quantified 
and radiative closure assessed. Specifying such a program is beyond the scope of the current review.

3. Regional-To-Global-Scale Modeling Contributions
Climate modeling is of course essential for calculating direct and indirect aerosol forcing globally, for filling gaps 
in the observational record, and for making climate forcing and response predictions based on assumed future 
emissions scenarios. Such models can also play a key role in targeting aircraft in situ measurements to sample 
specific aerosol and cloud situations, and subsequently, in identifying the aerosol sources and aging histories for 
aerosol air masses captured by satellite and suborbital observations (Figure 1, purple and yellow arrows, respec-
tively). However, from emissions to aerosol climate forcing, models incorporate large numbers of assumptions 
and parameterizations of complex physical and chemical processes.

3.1. Model Representation of Aerosol Particle Properties

There are a few fundamental steps models take in simulating the global distribution of aerosol particles, and then 
calculating aerosol direct radiative forcing (e.g., Kinne et al., 2003). First, aerosol particles and their precursor 
emissions are usually prescribed from existing data sets, such as for combustion aerosol (e.g., van der Werf 
et al., 2017), or calculated interactively by the models, typically for sea salt (de Leeuw et al., 2011) and mineral 
dust (e.g., Pu et al., 2020; Zender et al., 2003) based upon meteorological conditions such as near-surface wind 
shear and surface properties. The emission inventories specify the initial state of aerosol mass, and might provide 
some indication of particle composition, size distribution, and aerosol precursor gases (e.g., Hoesly et al., 2018; 
Randerson et al., 2012). These data, as well as the source locations and vertical distribution of emissions, must 
be supplied to the model, based on measurements where available (see Section  2), and inferred or assumed 
elsewhere. Then the atmospheric aerosol concentrations are calculated from simulated atmospheric processes, 
including chemical and physical transformation, transport, dry deposition, and wet removal. These processes are 
typically represented as parameterizations of physical mechanisms or as empirical relationships that depend on 
aerosol physical and chemical properties; they can be coupled interactively to meteorological conditions from 
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the host general circulation model. Next, the aerosol optical properties, including the wavelength-dependent 
extinction (scattering + absorption), SSA, and particle single-scattering phase function (or asymmetry factor) 
are calculated as a function of aerosol mass composition, particle size distribution, particle-type-specific hygro-
scopic growth, refractive indices, and sometimes particle shape, limited by the extent to which these properties 
have been measured for the aerosol types involved (see Section 4 below). In bulk aerosol treatments, the micro-
physical properties are prescribed, although a growing number of modal and sectional aerosol models calculate 
them explicitly from microphysical schemes (e.g., Bauer et al., 2008; Kokkola et al., 2018; Liu et al., 2007; Mann 
et al., 2010; Stier et al., 2005). The resulting optical and microphysical properties vary greatly depending on 
model parameterizations, choice of parameter values, and assumed meteorological conditions. Finally, the direct 
aerosol radiative effects are derived from the calculated or assumed aerosol optical properties, simulated mass 
loading, and meteorological conditions, typically using fast, simplified radiative transfer models, though often 
traceable to more detailed models (e.g., Iacono et al., 2008).

The best-constrained aerosol-related quantity in this process is probably the mid-visible AOD, thanks to the 
modern-era satellite observations from multiple space-borne platforms (see Section 2 above). This provides a 
basis for models to adjust their parameterizations and assumptions to better match at least the AOD. Soon after 
monthly global satellite AOD data products became available, they were used to validate model results (e.g., Gliß 
et al., 2021; Kinne et al., 2006). More recently, satellite as well as surface-network-based AOD has been used to 
constrain some models directly. Assimilation of aerosol data has become routine in many operational and research 
forecasting organizations (e.g., Benedetti et al., 2009; Randles et al., 2017). The International Cooperative for 
Aerosol Prediction (ICAP) offers a multi-model ensemble that includes major aerosol forecasting activities from 
around the world, often assimilating satellite-derived AOD as a constraint (Xian et al., 2019).

However, reproducing the global, mid-visible AOD to within the satellite retrieval uncertainty, typically a few 
tenths under good retrieval conditions, does not resolve the fundamental issues created by the intermediate steps 
leading up to the AOD calculation. This is clearly demonstrated in AeroCom studies showing that the diver-
sity of model-simulated total AOD is much smaller than the diversities of individual aerosol species and other 
key quantities such as mass loading, MEE, and lifetime, for which there are far fewer observational constraints 
(CCSP,  2009; Gliß et  al.,  2021; Kinne et  al.,  2006). Apparently, different models match the observed AOD 
for different reasons. Further, within models, the diversity of all aerosol-forcing-related quantities increases on 
regional spatial and seasonal/sub-seasonal temporal scales in most cases.

Although mid-visible AOD is by far the most common observable assimilated in these models, assimilation of 
lidar extinction and/or backscatter profiles as well as multi-wavelength reflectances from passive sensors is being 
explored (e.g., Benedetti et al., 2009; Sekiyama et al., 2010; J. Zhang et al., 2011; J. Zhang, Spurr, et al., 2020). 
Generally, in aerosol data assimilation, aerosol optical properties are specified by the host model; measurements 
are used to adjust only the aerosol constituent mass concentrations. As such, the process is limited by uncertain-
ties in both the measurements and the model parameterizations. Further, the simultaneous adjustment of optical 
properties, particle size, and mass concentration has not yet received adequate attention, especially given the 
increasing availability of hyperspectral data (e.g., C. M. Lee et al., 2015).

3.2. Application of Model Aerosol Type to Complement Measurements

Aerosol composition based on source characteristics, transport, removal processes, as well as microphysical 
and chemical evolution, can be extracted from model simulations and used to complement satellite measure-
ments. Specifically, models can in principle provide priors to aerosol remote-sensing retrieval algorithms, or 
retrospective refinement to the aerosol-type mixing state as part of the satellite aerosol-retrieval process when 
the aerosol-type information content of the satellite-observed signals is limited (Figure 1, purple arrow). For 
example, the model-simulated aerosol species, advected downwind, can be used to weight a loosely constrained 
range of particle properties derived from the satellite observations; the model-simulated aerosol type depends 
only on the source-receptor relationship, whereas the specificity of satellite-retrieved aerosol-type constraints 
varies with retrieval conditions, and is greatly diminished when the AOD is low or when a dominant type is 
lacking (Section 2 above). The challenge is associating the aerosol properties assumed by the model with the 
aerosol types derived by the satellite retrieval algorithm. An early effort keyed on ANG and absorbing AOD to 
connect aerosol properties simulated by an aerosol transport model with the satellite-retrieved aerosol type (S. Li 
et al., 2015). To make the comparisons, AOD fractions of the modeled aerosol components were ranked, reducing 
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dependence of the result on absolute AOD values. This application is in its infancy, and the process of associating 
satellite-constrained aerosol types with aerosol as represented in models requires substantial further investigation.

However, there is also considerable uncertainty in model-simulated particle property detail, arising in part from 
the lack of such detail in emission inventories used to initialize climate models, and limitations in the representa-
tion of particle microphysical and chemical aging processes. Model representation of aerosol properties often 
fails to capture the complexity found in nature, particularly in bulk models lacking microphysics, and generally, 
differences among commonly used aerosol representations in models can produce very different aerosol forcing 
results in model simulations (Nazarenko et al., 2017). Further, it has been shown many times in the literature that 
large diversity exists in model-simulated aerosol properties and both direct and indirect radiative forcing (e.g., 
Fiedler et al., 2019; Shindell et al., 2013; Stier et al., 2013). The first comprehensive inter-model comparisons of 
the main parameters determining the ARF were documented by the AeroCom community, with simulation results 
from more than a dozen global models (Kinne et al., 2006; Schulz et al., 2006; Textor et al., 2006, 2007). Since 
then, the diversity among model simulations of aerosol forcing and climate response has persisted, especially at 
regional scales (e.g., Bian et al., 2017; Gliß et al., 2021; Huneeus et al., 2011; D. Kim et al., 2014, 2019; Koch 
et al., 2009; J.-Y. Lee et al., 2021; Mortier et al., 2020; Pan et al., 2015; Samset et al., 2014; Sand et al., 2017; 
Tsigaridis et al., 2014) despite the advances in satellite observation and in situ measurement (summarized in 
Sections 2 and 4, respectively).

For climate modeling applications, aerosol amount is quite well measured by the combination of satellite and 
ground-based instruments (Section 2.1 above), which also places constraints on aerosol source strength (e.g., 
Dubovik et al., 2008; Petrenko et al., 2017), transport, and to some extent, removal (e.g., Das et al., 2017; D. 
Kim et  al.,  2014, 2019; Reid et  al.,  2009). However, aerosol-type diversity and the associated uncertainty in 
aerosol-species-specific physical and optical properties, especially SSA (e.g., Loeb & Su, 2010; McComiskey 
et al., 2008; Thorsen et al., 2021), continue to play a leading role in simulated aerosol direct forcing uncertainty. 
The availability of generally good, global AOD data sets from satellite remote sensing (Section 2 above) helps 
constrain transport and removal processes in models, although uncertainties in other, aerosol-type-specific prop-
erties such as SSA and MEE lead to much poorer constraints on mass loading and direct aerosol forcing. For 
indirect forcing, uncertainty due to limited observational constraints on the processes by which aerosol particles 
affect different cloud types (Section 2.3 above) combines with particle and cloud property uncertainties (Carslaw 
et al., 2013). In addition, vertical velocity at cloud-scale cannot be resolved in current climate models, yet, uncer-
tainties in this quantity can make models overly sensitive to aerosol or meteorological conditions, obscuring the 
underlying sources of modeled indirect forcing uncertainty (Sullivan et al., 2016). In addition, only a few models 
treat the aerosol effects on ice nucleation for cold clouds (e.g., Gettelman et al., 2012), further contributing to 
spread due to model diversity. These aerosol-climate-forcing issues in turn make major contributions to the 
diversity in model climate prediction, and model diversity represents only a lower bound on model uncertainty, 
especially when model diversity is reduced as a consequence of model inter-comparison studies rather than based 
on comparisons with measurements. To obtain estimates of actual model uncertainty requires having appropriate 
measurements against which to compare.

3.3. Strengths and Limitations of the Aerosol-Forcing Modeling Process

Within models, the terms associated with aerosol climate forcing can be isolated, ARF is usually defined as the 
change of net irradiance (in W m −2) at either the tropopause after stratospheric temperature adjustment (e.g., 
Ramaswamy et al., 2001), or at the top-of-atmosphere, provided stratospheric adjustment has little effect on the 
ARF (e.g., Schulz et al., 2006). As such, ARF is the combined result of aerosol-radiation interactions (ARI) and 
ACI (Boucher et al., 2013). ARI represents the change aerosol particles make to the incoming solar radiation 
reaching Earth's surface through both direct and semi-direct effects. As discussed in Section 2.3, ACI accounts 
for the impact aerosol particles have on cloud albedo and lifetime when they serve as CCN (or Ice Nuclei, IN), in 
turn altering radiative fluxes. ARF can produce positive or negative net climate forcing, depending on the aerosol 
type, meteorological conditions, surface properties, and the spatial distribution of aerosol particles relative to 
clouds.

To calculate ARI, models must represent the vertically and spectrally resolved aerosol extinction, SSA, and phase 
function (or asymmetry factor) of airborne particles. As discussed in Sections 3.1 and 3.2 above, these quantities 
depend on the emissions inventories and meteorology used to initialize the model, the atmospheric transport, 
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removal, chemical processes used to simulate aerosol mass concentrations and composition, and the underlying 
aerosol physical and optical properties including particle mixing state, size distribution and shape, hydroscopic 
growth, and spectral-dependent complex refractive indices. The parameterizations associated with each step in 
model simulation entail considerable uncertainties. Although most of the required quantities are either inferred 
from measurements or derived from theory, measurements to constrain the models are grossly limited or unavail-
able. Extrapolating sparse optical property measurements over much larger spatial and temporal domains is risky, 
resulting in large uncertainties propagating throughout the multiple stages of radiative forcing calculations (e.g., 
Stier et al., 2013).

Modeling the ACI component of ARF is even more uncertain than that for ARI, as it involves the liquid and 
ice cloud formation processes, lifetime, and properties along with aerosol particle microphysical characteristics 
(Section 2.3 above; comprehensively reviewed by Bellouin et al., 2020). For example, changes in CCN can affect 
cloud-droplet number; clouds can respond with “adjusted” mass and extent. Similarly, aerosol particles can affect 
precipitation and latent heat release, although changes in precipitation on regional scales are mediated primar-
ily by energy and water budget considerations (e.g., Dagan & Stier, 2020; Gettelman & Sherwood, 2016; Held 
& Soden, 2006; O’Gorman et al., 2012). Studies of aerosol impacts on deep convective clouds find that with 
increased aerosol loading, precipitation and convective updrafts might increase, decrease, or remain relatively 
unchanged, apparently depending upon other, unidentified factors (Boucher et al., 2013; Tao et al., 2012), results 
that entail significant model uncertainties (Marinescu et al., 2021). As discussed earlier, quantifying aerosol indi-
rect effects also involves modeling cloud formation, lifetime, and properties, and is highly sensitive to cloud-scale 
vertical velocities and the above-mentioned aerosol characteristics. Many of the relevant processes operate on 
spatial scales far smaller than the resolution of global models and are therefore either highly parameterized or 
simply not included, such as some aerosol effects on convective clouds. Large Eddy Simulations (LES) are valua-
ble research tools, complementary to climate models in that they can resolve many of the smaller-scale processes; 
however, they still entail assumptions that are often unconstrained by measurements, are impractical to run over 
large areas or long time periods, and cannot provide estimates of forcing (e.g., Bellouin et al., 2020).

Further, the review of aerosol forcing modeling above addresses only present-day conditions. In most 
modeling-oriented climate assessments such as the IPCC reports, ARF requires accounting for the difference 
between present-day and “pre-industrial” conditions, that is, conditions at a time when it is assumed anthropo-
genic influences were minimal, commonly taken as 1750 or 1850. This of course engenders further uncertainties, 
as discussed in Section 1.

4. The Role of Aircraft and Ground-Based In Situ and Remote-Sensing 
Measurements
Existing aircraft and ground-based in situ and remote-sensing aerosol measurements are sometimes described 
collectively as the suborbital aerosol program-of-record. These data provide the key information that has been 
applied by both the satellite and modeling communities as constraints on aerosol microphysical properties (e.g., 
Gliß et al., 2021; Reddington et al., 2017) and vertical structure (Watson-Parris et al., 2019). The particle property 
measurements are used to assign priors and to make other assumptions in many satellite remote-sensing aerosol 
retrieval algorithms. They also form the basis for the microphysical property assumptions of aerosol source char-
acteristics in most models, and they can contribute to model validation (Figure 1). For climate applications, these 
suborbital measurements are usually used in a statistical sense due to their significant spatial and/or temporal 
sampling limitations.

4.1. Surface-Based Observation Network and Aircraft Field Campaign Contributions

Networks of surface-based remote-sensing instruments, such as sun photometers (e.g., the Aerosol Robotic 
Network, AERONET, Holben et al., 1998; the Marine Aerosol Network, MAN, Smirnov et al., 2011) and aero-
sol lidars (e.g., the Micro-Pulse Lidar Network, MPLNET, Welton et al., 2001; the European Aerosol Research 
Lidar Network, EARLINET, Pappalardo et al., 2014), generate a substantial database of aerosol amount, vertical 
distribution, and some particle property information. In addition, heavily instrumented surface sites, such as 
the US Department of Energy's Atmospheric Radiation Measurement (ARM) program at their Southern Great 
Plains site and Mobile Facilities (e.g., Mather & Voyles, 2013; Vogelmann et al., 2012) contribute detailed, local 
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aerosol, cloud, and radiation measurements. (A table of leading surface-based aerosol measurement networks is 
given in Kahn et al. (2004).) Direct in situ sampling at ground stations can add physical, optical, and chemical 
detail to the remotely sensed particle optical properties and can document long-term variability. However, such 
measurements are acquired only near or at the surface and at only a few sampling sites, mostly concentrated in 
a few regions of the globe (e.g., The US Interagency Monitoring of Protected Visual Environments network, 
IMPROVE, Malm & Hand, 2007; the Surface Particulate Matter Network, SPARTAN, Snider et al., 2015; the 
Global Atmospheric Watch (GAW) network, Andrews et al., 2019; Rose et al., 2021; Laj et al., 2020; the Euro-
pean Commission's Aerosol, Clouds, and Trace Gases Research Infrastructure (ACTRIS) (https://www.actris.
eu; last accessed: March 2023); plus studies of collected data by Burgos et al., 2020; Fanourgakis et al., 2019).

Intensive aircraft field campaigns complement the surface-based measurements, offering much greater flex-
ibility in sampling the atmosphere near and downwind of aerosol sources; this allows for in situ as well as 
remote-sensing measurement of transported aerosol layers aloft as they evolve, and further, can provide insight 
into the processes involved in aerosol evolution and aerosol-cloud interaction (e.g., the Atmospheric Tomogra-
phy Mission, ATom, Brock et al., 2021; the Studies of Emissions and Atmospheric Composition, Clouds and 
Climate Coupling by Regional Surveys campaign, SEAC 4RS, Toon et  al.,  2016; The Green Ocean Amazon 
Experiment, GOAMAZON, Martin et al., 2017; the Observations of Aerosols above Clouds and their Interactions 
campaign, ORACLES, Redemann et al., 2021; the Aerosol Cloud Meteorology Interactions over the Western 
Atlantic Experiment, ACTIVATE, Sorooshian et al., 2021). However, such campaigns can target only selected 
regions and are usually limited in time, typically lasting only a few weeks or months. Finally, laboratory analysis 
of collected samples is sometimes required to obtain compositional and some key optical results, but are currently 
also severely limited in scope (e.g., Di Biagio et al., 2017; McNeill et al., 2020).

4.2. Strengths and Limitations of Aerosol Property Data Available From Suborbital Sources

Aerosol property databases have been developed in the past. A leading example is the Optical Properties of 
Aerosols and Clouds (OPAC) database (Hess et al., 1998). It provides tabulated, digital, microphysical and opti-
cal properties, covering UV, visible, and infrared spectral ranges, for aerosol components as well as mixtures 
representing various aerosol types, and includes data calculated at a number of relative humidity values. The 
need for such databases is demonstrated by the widespread use of OPAC optical properties in models, satellite 
remote sensing retrieval algorithms, and as precomputed packages for use in radiative transfer codes (e.g., Chin 
et al., 2002; Dee et al., 2011; Gasteiger & Wiegner, 2018; Thomas et al., 2009; Vicent et al., 2020). Indeed, 
OPAC has over 3,000 citations at the time of writing, according to Google Scholar. However, OPAC has known, 
significant limitations, due to the lack of representative (or in some cases, any) measurements of the required 
aerosol properties. These limitations have been documented in the literature (e.g., Alvarado et al., 2016; Colarco 
et al., 2013; Zieger et al., 2013) and, despite the availability of much better instrumentation than that used decades 
ago to help construct OPAC, this situation persists today.

As consistently and systematically measured particle chemical, microphysical, and optical properties are currently 
lacking, it is difficult to critically assess and improve model assumptions. Recent efforts to collect retrospective, 
in situ aerosol data into a better organized “program-of-record” promise to help refine our sense for the range 
of particle property values in different places (e.g., Balkanski et al., 2021; Reddington et al., 2017; Schuster & 
Trepte, 2021). However, past aerosol property measurements were not designed to provide the comprehensive 
inputs needed for global climate modeling. To be most useful as constraints on modeling aerosol forcing, subor-
bital measurements of particle microphysical and chemical properties must meet the following four criteria:

•  A statistical sampling of key variables for major aerosol airmass types is needed. (An aerosol airmass describes 
the spatial and temporal distribution of aerosol particles having similar properties, based on remote-sensing 
retrieval of aerosol type or on model simulation from a particular source and evolution.) Aircraft in situ aero-
sol measurements are not often made with the aim of obtaining the distribution (e.g., the probability distri-
bution function or PDF) of particle property values associated with specific aerosol types. Except at sparse 
surface-based sampling stations, a limited number of individual measurements of a given aerosol airmass type is 
the best we currently have in most cases, whereas to establish the PDF of a quantity, a sufficient number of meas-
urements is required so that subsequent measurements reproduce the distribution of values already obtained.

•  A suite of specific physical, chemical, and optical quantities is needed to adequately characterize an aerosol 
type for climate applications, and would also be useful for air quality modeling (Table 1). All the required 
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Aerosol properties obtained from in situ measurements b and integrated analysis

 Spectral extinction coefficient – To constrain and to interpret spectral Aerosol Optical Depth (AOD)

 Spectral absorption or single-
scattering albedo

– To determine atmospheric spectral light-absorption and heating

– To constrain spectral AOD retrievals

 Particle hygroscopic growth factor – To connect particle properties with ambient RH conditions

– To model particle activation and aerosol-cloud interactions

 Particle size distribution – To model particle optical properties and loss mechanisms

– To model particle activation and aerosol-cloud interactions

– As a complement to chemical composition discrimination

– Required for deriving aerosol Mass Extinction Efficiency (MEE)

 Particle composition – For source identification

– To classify measurements in terms of aerosol types as specified in most models, for example, sea salt, sulfate, mineral dust, 
black carbon (BC), brown carbon (BrC), especially important for aerosol-cloud-interaction modeling

– To support deriving properties of the anthropogenic fraction, as needed to calculate anthropogenic aerosol “climate” forcing 
(also supports air quality applications)

 Spectral single-scattering phase 
matrix (all possible angles)

– To calculate radiation fields

– To constrain multi-angle radiance AOD retrievals

– Polarized—to help determine aerosol type, and to constrain remote-sensing observations where polarized data are included

 MEE – To translate between optical remote-sensing measurements and model aerosol mass (Can be derived from integrated 
analysis of particle size distribution and extinction coefficient, with density deduced from particle compositional 

constraints or measured directly from samples)

 Real refractive index – To model aerosol optical properties

– To constrain AOD retrievals to the level-of-detail required for aerosol forcing

Variables providing meteorological context

 Carbon monoxide (CO; also 
possibly CO2, NO2, O3)

– As a tracer for smoke, to help distinguish smoke from urban pollution in some cases

– For modeling heterogeneous reactions, secondary aerosol formation

 Ambient temperature, pressure, 
and relative humidity (RH)

– To help interpret ambient measurements

– To translate between instrument and ambient conditions

 Aircraft 3-D location – To relate aircraft measurements to model simulations and to any available satellite observations, for source identification 
and aging history

Variables providing ambient, remote-sensing context

 Ambient Spectral single-scattering 
phase matrix (all possible angles)

– To assess in-aircraft measurements by comparing with ambient conditions

– To help calculate radiation fields and constrain remote-sensing AOD retrievals

– Polarized—to help determine aerosol type, and to constrain remote-sensing retrievals where polarized data are included

 Ambient spectral extinction 
coefficient

– To constrain remote-sensing spectral AOD retrievals and assess in-aircraft measurements by comparing with ambient 
conditions

 Large particle/cloud probe – To provide information about dust and other particles larger than the inlet size cut of other instruments

– As an independent measure of possible cloud impact on the reliability of other data

 Aerosol layer heights – To determine flight levels for subsequent direct sampling

– To correlate with meteorological conditions

– As a constraint on trajectory modeling to identify aerosol sources and evolution

Note. This table was originally developed for aircraft aerosol measurements, as these can sample aerosol aloft and can characterize particle property evolution 
systematically. However, a subset of these measurements acquired from surface-based instruments can contribute as well, especially for the near-surface components 
that are difficult to sample from airborne platforms. Source: Adapted from Kahn et al., 2017; © American Meteorological Society. Used with permission.
 aThe variables in this table are aimed at characterizing aerosol properties for the major aerosol air mass types in general. Cloud condensation nuclei and Ice Nucleii would 
be included, especially in the hygroscopic growth factor and size distribution measurements. However, systematic and comprehensive measurements of additional cloud 
and meteorological variables associated with aerosol-cloud interactions, for the major cloud types and meteorological regimes, globally, as introduced in Section 2.3, 
would require a different aircraft program, beyond the scope of this review.  bThese quantities are typically measured inside the aircraft, at low or at least altered RH.

Table 1 
The Suite of Aerosol Properties That Need to Be Measured Systematically, Primarily From Aircraft, and the Purpose of Each, for the Climate-Forcing Application a
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types of measurements have been made in the past, but rarely have they all been made together for the same 
aerosol airmass and under appropriate ranges of meteorological conditions.

•  Particle property evolution during transport needs to be characterized. The properties of many aerosol types 
change significantly as they age. As such, the particle properties of major aerosol types need to be character-
ized systematically downwind from the source (or upwind toward the source) to adequately capture the aging 
process. Further, the source, the age, and the associated environmental conditions need to be recorded for 
each sample, best done in most cases by aerosol transport modeling (Figure 1, yellow arrow). (The timescales 
for particle evolution vary. Changes in wildfire smoke particles and secondary aerosol formation typically 
occur over minutes to hours (e.g., Kleinman et al., 2020; Yokelson et al., 2009), whereas alteration of mineral 
dust properties can take days (e.g., Denjean et al., 2016) and is unlikely to be fully captured during a single 
aircraft flight.) Such aircraft measurements can also acquire information characterizing aerosol variability 
at spatial scales of a few km or less, which can be important for representing sub-grid-scale aerosol proper-
ties and ACI processes in climate models (Fast et al., 2022; Haywood et al., 1997). With the help of aerosol 
transport modeling and/or synoptic-scale satellite observations, aerosol sources and transport history can be 
determined, even when aerosol layers are superposed at different elevations and from different sources, but 
again, this has not been done for much of the program-of-record.

•  Uncertainty characterization is critical to assess the resulting uncertainty in derived aerosol forcing. However, 
estimates of measurement uncertainty are difficult to obtain for many aircraft in situ instruments. This situ-
ation can be improved considerably with techniques that were unavailable for most field campaigns until 
recently. For example, open-path instruments, some existing and some in development, can measure aerosol 
properties under ambient conditions. Such properties include aerosol scattering and extinction, as well as 
particle size distribution (Martins, 2016) and light-absorption estimates (Gordon et al., 2015). These measure-
ments facilitate uncertainty estimate calculations for the particle hygroscopicity derived from other, in-aircraft 
measurements. In addition, the open-path instruments can produce uncertainty estimates (or even corrections) 
for directly measured inlet efficiency, which is especially important for super-micron particles.

Although many current models are not equipped to apply detailed in situ aerosol property measurements directly 
due to the simplicity of their parameterizations, such information remains critical for characterizing model error. 
By systematically collocating measured and modeled aerosol optical properties in space and time, the probability 
distribution of errors in these parameters can be estimated. Such diagnostics can help refine model parameter-
izations and better quantify the uncertainties in the derived ARF, especially those associated with simplified 
assumptions and parameterizations. And as computer capabilities allow climate models to advance, the applica-
bility of information provided by such measurement detail will increase. For example, more sophisticated param-
eterizations of aerosol-cloud interactions and more subtle particle physical and chemical changes during particle 
aging could be captured in the simulations.

5. Discussion—Addressing Suborbital Data Limitations
Of the three elements shown in Figure 1, the suborbital measurement component is the least well addressed for the 
aerosol-climate-forcing application by existing and planned efforts. In this section, we review the more compre-
hensively defined possibilities for aerosol property measurements first, and touch on those for ACI subsequently.

The current aerosol measurement program-of-record does not meet the criteria summarized in Section 4. This 
is reflected in the diversity of assumed aerosol properties in remote-sensing retrieval algorithms, and the even 
greater particle property diversity among model assumptions (e.g., CCSP,  2009; Gliß et  al.,  2021; Myhre 
et al., 2013). The lack of consensus about aerosol intensive properties provides some indication of what is yet to 
be achieved with systematic in situ aerosol measurements. All measurements have uncertainties. However, in situ 
measurements can provide the most direct way to quantify particle SSA and size distribution, offer by far the best 
constraints on particle hygroscopicity and the CCN size spectrum, and produce the only available constraints on 
MEE and actual particle composition. This is illustrated, for example, by the work of Brock et al. (2021).

As such, a comprehensive database of key in situ measurements targeting the major aerosol air masses would fill 
this persistent gap in our ability to model the effects of aerosol particles on climate. It would also add value to 
several decades of existing as well as all future global satellite remote-sensing measurements by providing more 
robust, complete, and detailed particle microphysical property information than is currently available to use as 
priors or constraints on remote-sensing retrieval algorithms. For data assimilation, such measurements would 
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provide a better basis for quantifying errors arising from faulty or uncertain assumptions about aerosol opti-
cal  properties in the retrieval process and would open the door for the assimilation of aerosol properties beyond 
AOD. The data would be of value for air quality applications as well, by contributing to the accuracy of aerosol 
species as represented in air quality models.

One simplifying factor for developing a database addressing current needs is that, for a given source in a given 
season, the particle intensive microphysical and optical properties tend to be repeatable, even as the aerosol 
amount varies on many spatial and temporal scales. For example, although the amount of dust raised from a 
particular desert source region can vary diurnally, seasonally, and interannually, the emitted dust microphysical 
properties generally remain unchanged (e.g., Reid et al., 2008). Similarly, wildfires consuming the same vege-
tation types in the same ecosystem and season tend to produce smoke particles having similar properties (e.g., 
Junghenn Noyes et al., 2022; Reid et al., 2005). This means a program aimed at making the suite of key in situ 
particle intensive property measurements systematically is at least feasible.

Complementary satellite measurements are also needed (Figure  1), frequently, over large spatial scales for 
regional context, (a) to map the varying extensive properties, that is, aerosol amounts and 3-D spatial distribu-
tions of different aerosol types, and (b) to limit as much as possible sampling bias (e.g., Schutgens et al., 2017). 
Aerosol type, the classification possible based on particle size, shape, and SSA constraints that can be derived 
from satellite remote-sensing measurements, is the key to linking the extensive aerosol air masses, mapped out 
frequently and globally by satellites, with the detailed intensive properties that can only be derived from in situ 
measurements. Hence, systematic in situ aircraft measurements will have made a key contribution to reducing 
aerosol forcing uncertainty once they have adequately characterized the detailed particle microphysical properties 
for major aerosol sources and their downwind evolution. Further, the in situ measurements can be acquired under 
non-precipitating cloudy conditions, in some cases even if the aerosol particles are concentrated within a cloud 
layer, and the observations need not be obtained in synchrony with satellite observations (although doing so at 
times would be important, e.g., for remote-sensing retrieval validation and assessment of consistency among 
different measurement approaches).

Aircraft in situ programs aimed at measuring aerosol microphysical or optical properties systematically have 
been deployed in the past, though with different objectives from the one discussed here (e.g., the Civil Aircraft 
for Regular Investigation of the Atmosphere Based on an Instrument Container, CARIBIC, Nguyen et al., 2006; 
the Vertical Profiles of Aerosol Optical Properties over rural Oklahoma program, Andrews et  al.,  2011; the 
Vertical Profiles of Aerosol Optical Properties over Central Illinois program, Sheridan et al., 2012). Some recent 
airborne science projects have also included components aimed at characterizing aerosol properties or processes 
systematically (Brock et al., 2021; Redemann et al., 2021; Sorooshian et al., 2019, 2021). These efforts offer some 
guidance as to how such programs might operate. However, the level of effort needed to characterize statistically 
the required suite of aerosol properties (Table 1), for many aerosol types, has been beyond the scope of past 
campaigns, which have either focused on one specific region or included only commercial airline pathways, and 
some quantities such as MEE have not been constrained in most of these experiments.

A possible future aircraft program addressing the needed aerosol microphysical properties for reducing aero-
sol forcing uncertainty has been outlined previously, showing that the key variables could be measured with a 
relatively small but dedicated aircraft, and with technologies that existed even in 2014, though there have been 
some significant improvements in instrumentation since (Kahn et al., 2017). The aircraft would fly two-to-three 
times per week from an initial base of operations, with fixed flight plans aimed at sampling all the major, clima-
tologically likely aerosol air masses accessible from the base, as identified in advance from model simulations 
and satellite aerosol-type mapping. Each flight plan would begin with a high-altitude traverse along one of the 
pre-determined paths, and a simple lidar on board would determine the elevations of the aerosol layers below. The 
layers would then be sampled, as far up- or downwind as feasible, and the aircraft would return to base.

Once the PDFs of the key variables were acquired for the accessible aerosol air masses, the aircraft would move 
to a new base of operations, again informed by an analysis of aerosol transport model simulations and aircraft 
siting considerations. Unlike typical aircraft field campaigns, the data would be processed routinely, probably 
at a central location, as is common for NASA satellite missions. In addition to helping deployment planning in 
advance, by identifying important source locations and likely dispersion pathways as sampling targets, aerosol 
transport models would also be run routinely during deployment, to characterize the sources and aging histories 
of the aerosol particles sampled during each flight (Figure 1, yellow arrow). As opportunities arose, the aircraft 
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would overfly ground stations for cross-validation, and could also participate in intensive field campaigns when 
appropriate. Taking account of typical aircraft maintenance considerations, the availability of basing facilities, 
and the seasonality of some aerosol sources, we estimate that a deployment of roughly three-to-four years would 
be required to sample the major aerosol air masses of North America. There is additional uncertainty in this 
estimate, however, due to limited knowledge about the number of samples required to obtain PDFs for different 
key variables and for different aerosol types, depending also on the capabilities of the designated aircraft and 
the robustness of the instrumentation. The successful demonstration of such a program could engender similar 
programs hosted in other regions around the world, leading to characterization of the major aerosol airmass types, 
globally.

The requirements for suborbital measurements to comprehensively reduce uncertainties in modeling ACI processes 
and effects are not as well established as those described above for addressing aerosol properties. A suborbital ACI 
measurement program could be considerably more complex. Reviews of past modeling and measurement work (e.g., 
Rosenfeld et al., 2014; Mülmenstädt & Feingold, 2018; Bellouin et al., 2020) and experience from recent aircraft 
campaigns aimed at characterizing aerosol particles, clouds, and their interactions in specific regions (Behrenfeld 
et al., 2019; Crosbie et al., 2022; Sorooshian et al., 2019, 2021) provide some indication of what would be involved. 
Both aerosol and cloud properties would need to be measured for this application, on spatial scales ranging from 10 −7 
to 10 6 m and temporal scales of minutes to hours or more. Sampling would have to encompass major cloud types, and 
several coordinated aircraft would probably be required to provide a combination of remote-sensing and in situ obser-
vations capable of resolving variations both vertically as well as horizontally within and surrounding cloud systems. 
Variables identifying distinct cloud and meteorological regimes, that could subsequently be mapped with space-based 
remote sensing, would be required to allow the field results of be extrapolated to global scale and extended time 
periods. A future study identifying the required variables, likely instruments to make the key measurements, targeting 
requirements, and observation strategies aimed at reducing ACI modeling uncertainties in general is indicated.

6. Conclusions—A Three-Way Street
The aerosol-related climate forcing uncertainties have not diminished appreciably in more than 20 years, despite 
substantial progress in other aerosol- and cloud-related measurement and modeling areas. Forcing uncertainty 
translates directly into climate change attribution and prediction uncertainty.

Unlike most previous reviews of aerosol climate forcing constraints and uncertainties, we take a 
measurement-oriented perspective. As illustrated in Figure 1, the satellite and suborbital measurement as well 
as the modeling research communities each have unique and essential contributions to make to the other two to 
achieve substantial progress in reducing the uncertainty in aerosol climate forcing overall. The application of 
loose satellite constraints on aerosol type and precursor gas distributions to improve model simulations needs 
to be explored in broader terms than previously, in part by taking the limited retrieved information content on 
particle size, shape, and light-absorption where available and linking it to more specific aerosol species, based 
on source properties projected to the observed locations by aerosol transport modeling. This is an example of a 
two-way street—the models help refine the satellite-retrieved aerosol type results, especially where the AOD is 
too low for reliable satellite aerosol-type retrieval or where cloud, complex surface topography or snow cover 
entirely precludes remote-sensing aerosol measurement; the aggregate of satellite instruments provides the 3-D 
spatial distribution of aerosol amount and type to constrain and/or validate the models, improving aerosol source 
initialization, transport, transformation, and deposition, and reducing model bias. Aerosol data assimilation offers 
another example: for each analysis cycle, the model projects past observations into the future, which in turn 
provides additional constraints for the assimilation of new data.

As outlined in Section 4 above, for the suborbital component to adequately contribute to modeling and to the 
interpretation of satellite observations (the third way), a database of systematic, statistically representative in situ 
measurements needs to be developed, containing the key particle microphysical, optical, and chemical properties 
and associated uncertainty estimates that cannot be derived from remote-sensing measurements alone. Such 
in situ measurements are needed to improve assumptions and parameterizations in models as well as observa-
tion operators for data assimilation, putting the model-assumed aerosol particle properties on more solid and 
consistent footing. The detailed aerosol properties will also serve to improve the priors or constraints on satellite 
retrieval algorithms, adding value to more than two decades of retrospective as well as planned future satellite 
aerosol observations. Further, such in situ aerosol data, with attention to the co-variability among aerosol and 
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meteorological variables, would make more precise and quantitative connections between the satellite optical 
constraints on aerosol amount and type and the modeled, species-specific, aerosol mass (e.g., the MEEs), a key 
requirement for improved data assimilation and model validation. A separate suborbital measurement program is 
needed to characterize the processes by which ACI interact, reporting detailed cloud properties in the presence of 
different aerosol amounts and types, under a range of meteorological conditions.

Completing the pattern of relationships, models, constrained by satellite measurements, can help in targeting 
the systematic in situ measurements to regions where they will matter most. Subsequently, models can help 
interpret the aerosol source and aging history, as well as cloud regime-type and evolution acquired through 
satellite and suborbital observations. In addition to its application to climate-related study, this approach 
would help improve model representation of surface-level particulate matter (PM) concentrations and compo-
sition, which is at the heart of air quality monitoring on regional and global scales (e.g., Appel et al., 2008; 
Hammer et  al.,  2019; van Donkelaar et  al.,  2021). Specifically, two leading sources of uncertainty for air 
quality applications on regional-to-global scales relate to the aerosol vertical distribution and aerosol compo-
sition, which are also among the leading uncertainties in aerosol contributions to climate forcing, though 
the observational requirements for air quality applications are somewhat different, for example, requiring 
near-surface aerosol chemical toxicity and possibly tighter constraints on particle size. For air quality appli-
cations, recent advances in data analysis techniques are likely to make important contributions (e.g., Bellinger 
et al., 2017).

Clearly, programs supporting advanced, global-scale satellite and surface-based aerosol, precursor gas, and 
cloud observations, climate modeling, surface networks, and intensive field campaigns aimed at character-
izing the underlying physical and chemical processes involved, as currently planned, are all essential. The 
main parts of the overall picture missing from current programs or those planned for the near future are: 
(a) a program of long-term, systematic aircraft measurements aimed at creating a climatology of the key 
aerosol microphysical properties driving aerosol-climate interactions for the major aerosol airmass types, 
along with their statistical distributions and uncertainties, (b) a suborbital program aimed at filling gaps 
in  aerosol-cloud-interaction-related cloud-scale microphysics, cloud optical properties, and associated 
dynamics, and (c) the mandate, the support, and the computational resources for the respective communities 
to work together in detail on the synthesis effort—the three-way street (Figure 1). Such efforts would go a long 
way toward “model-data fusion” (e.g., Gettelman et al., 2022); that is, developing consistent representations 
of aerosol properties as retrieved from remote sensing, measured in situ, and adopted by models (sometimes 
referred to in the AeroCom, AeroSat, and ICAP communities as “harmonizing” aerosol types among different 
platforms and communities). It would help members of the involved research communities agree upon those 
properties that most affect the aerosol analysis or application in a given place and time, and would greatly 
improve the feasibility of exchanging aerosol information among and between measurements and models. 
The cloud-related requirements for constraining aerosol-cloud interactions, such as better characterization of 
ice-cloud processes, documentation of aerosol effects on cloud condensate and cloud fraction, as well as verti-
cal velocity constraints, especially in convective systems, are also needed. Yet, fully effecting the three-way 
street seems to be essential for substantially reducing the aerosol direct and indirect forcing uncertainty that 
persistently dominates climate and also affects air quality prediction uncertainty. The technical capabilities to 
achieve this are all currently available.
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